

Under the Shadow: Exploiting Opacity Variation for Fine-grained Shadow Detection

Xiaotian Qiao, Ke Xu, Xianglong Yang, Ruijie Dong, Xiaofang Xia, Jiangtao Cui Xidian University

Motivation

Existing works consider shadow regions as binary masks, often leading to imprecise detection results and suboptimal performance for scene understanding applications.

Fine-grained Shadow Detection Problem

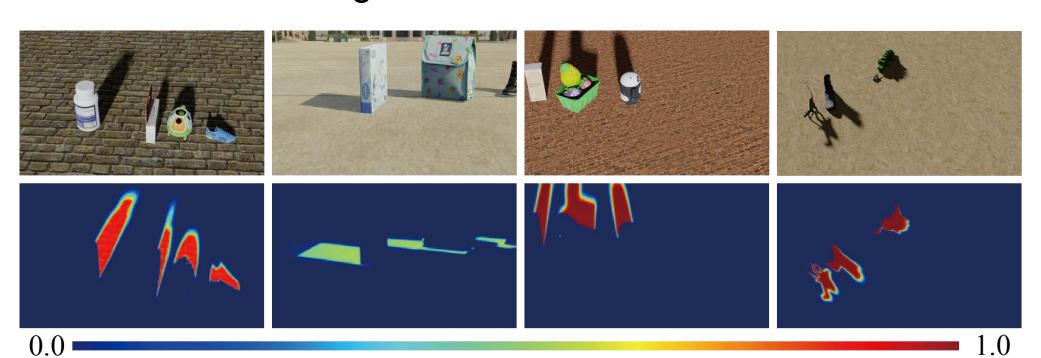
- Given an input image, our goal is to predict a continuous opacity mask representing the shadow region.
- The continuous shadow opacity mask is useful in various downstream scene understanding applications.

Contributions

- We make the first attempt to investigate fine-grained shadow detection by exploiting opacity variations.
- We propose a new shadow detection method by explicitly capturing shadow position and opacity characteristics, and construct a new FSD dataset.
- Results show that our method can predict fine-grained shadow characteristics and enable various applications.

Fine-grained Shadow Detection Dataset

The FSD dataset contains 2,653 scenes with different objects, scenes, and light source properties. Each scene contains varied fine-grained shadow characteristics.



Approach Shadow Feature Separation Opacity Mask Prediction ► Backbone Opacity F_{opa} **Shadow Opacity** Shared $\mathcal{L}_{ ext{pos}}$ Weights $\mathcal{L}_{ ext{opa}}$ Gradient Map Opacity $F_{opa'}$ Backbone Position $F_{pos'}$ Opacity Mask

Shadow Opacity Augmentation Module

SOA aims to leverage shadow opacity characteristics by performing shadow augmentation through randomly altering the opacity of shadow regions.

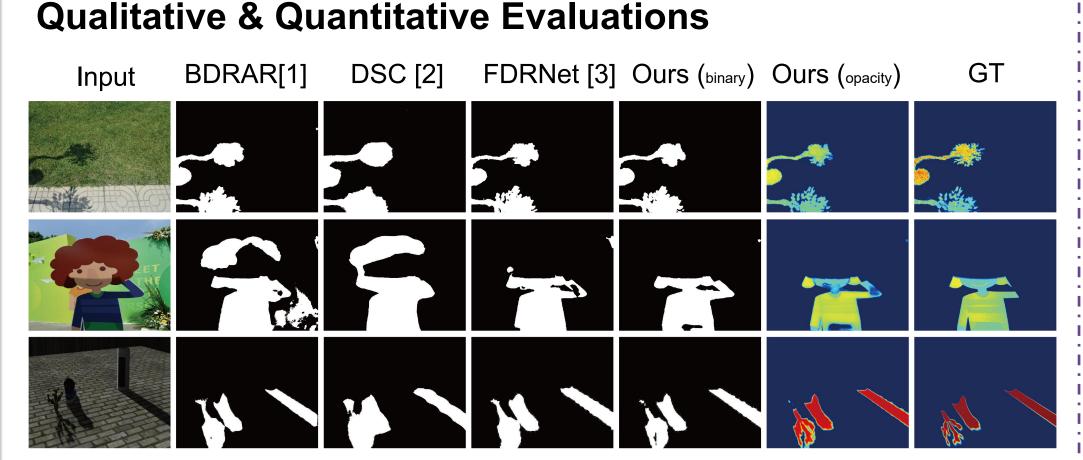
Shadow Feature Separation Module

SFS aims to extract the position and opacity features separately from an input image pair of the same scene with different shadow opacities.

Opacity Mask Prediction Module

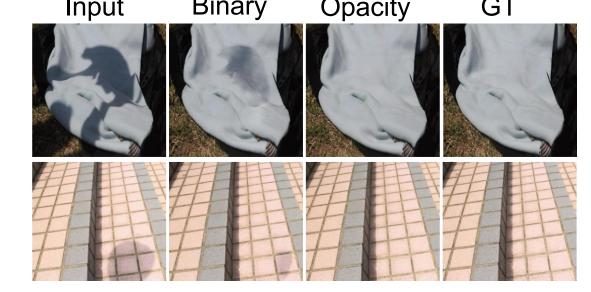
OMP aims to fuse positions and the opacity feature to predict the fine-grained shadow detection result.

Experiments



Metric	BDRAR [1]	DSC [2]	FDRNet [3]	Ours
BER	2.69	3.42	1.55	1.32
Shadow	0.50	3.85	1.22	0.96
Non Shad.	4.87	3.00	1.88	1.67

Shadow Removal Application



	MASK	PSNR	SSIM	MAE
	FDRNet	37.31	0.985	5.04
	GT	37.78	0.985	3.44
丰	Ours	42.06	0.995	3.32

3D Reconstruction Application

We employ the opacity map (instead of the binary map) of shadow regions, as the guidance for 3D reconstruction [4].

	Mask	Bunny	Cube
	FDRNet (Binary Shadow Mask)	0.00957	0.01074
	Ours (Continuous Shadow Mask)	0.00531	0.00777

Shadow Editing Application

Background Editing Foreground Editing

Reference

- [1] Lei Zhu et al. Bidirectional feature pyramid network with recurrent attention residual modules for shadow detection. In ECCV, 2018.
- [2] Xiaowei Hu et al. Direction-aware spatial context features for shadow detection and removal. In IEEE TPAMI, 2019.
- [3] Lei Zhu et al. Mitigating intensity bias in shadow detection via feature decomposition and reweighting. In ICCV, 2021.
- [4] Kushagra Tiwary et al. Towards learning neural representations from shadows. In ECCV, 2022.